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ABSTRACT

Two alogrithms are presented for calculation of the van der Waals modes of weakly bound

clusters. Both methods rely on the harmonic normal mode approximation and a chosen

intermolecular potential. These calculational techniques differ specifically in the form of the force

field employed: one method uses the total (both intra- and inter- molecular) force field for the

cluster and the other uses only the intermolecular force field. Both methods require rather elaborate

coordinate transformation and their first and second partial derivatives; these are provided in detail.

The two calculations generate eigenvalues and eigenvectors that are in complete agreement with one

another for a given potential. The methods insure that the van der Waals modes are calculated at

the proper cluster equilibrium configuration for which all torques and forces on molecules and/or

atoms are effectively zero. Examples are presented for (I-H20)2 (n= 2, ..., 7), benzene clustered

with water, methane, and ammonia, and a number of different intermolecular potentials. Some of

the observed heterogeneous cluster van der Waals modes are reassigned in light of these new

results.
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I. INTRODUCTION

The accurate calculation of cluster van der Waals vibrational modes based on empirical

potentials is of central importance for a number of purposes: 1. assignment of spectroscopically

identified cluster vibrations; 2. determination and validation of various potential energy models of

cluster interactions; 3. determination of the structure of both large and small clusters; and 4.

estimation of the effect of the mixing of molecular internal modes with cluster intermolecular van

der Waals modes. In this report we discuss two different methods for the proper and accurate

calculation of van der Waals modes of clusters: one method calculates van der Waals modes for

fixed molecular geometries, and the other calculates van der Waals modes following a distortion

(relaxation) of molecular geometry brought about by the intermolecular potential energy. We refer

to these algorithms as the external force field (EFF) method and the total force field - relaxed

molecule (TFF-RM) method, respectively.

Systematic study of intermolecular motions in crystals can be traced back to the early

studies of Halford 1, Horning 2, and Shimanouchi3. Bernstein4 calculated the modes of a benzene

crystal based on these earlier studies and Warshel and Lifson5 gave general formulas for crystal

normal mode calculations with periodic boundary conditions. Scheraga and co-workers have

presented several calculations 6-7 of van der Waals modes of clusters. More recently Menapace, and

Bernstein 8 extended this approach to calculate the van der Waals vibrational modes of

heterogeneous clusters (i.e., C6H6(H20) 1 C6H6 (Ar)1, C6H6 (CH4) 1 C6H6 (NH 3) 1, etc.). Jortner

et al 9 "11 calculated a limited subset of cluster normal modes using an empirical potential and an

approximate Schrdinger equation. Watts et al12 ,13 have studied the structure and vibrations of the

water dimer employing a number of different approaches. Janda et a114 have studied the ethylene

dimer and ethylene rare gas systems. With the exception of the quantum mechanical treatments9 14

the above studies employ the GF matrix method of Wilson 15 considering both inter- and intra-

molecular interactions (force fields) simultaneously. In all of these instances the original molecular

geometry is employed in the calculation - any molecular distortion due to the intermolecular
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interaction within the cluster or crystal is (implicitly) ignored. We term this approach, without

molecular structure relaxation, the total force field-unrelaxed molecule (TFF-UM) approach.

Cluster normal mode analyses employing the GF matrix method involve (implicitly or

explicitly) the overall cluster translational and rotation degrees of freedom. The TFF-UM approach

to this calculation does not necessarily set these modes to zero energy, as of course a correct

calculation must. Indeed, if the intermolecular interactions are strong, this approach gives

significantly large cluster overall translational and rotational energies and causes extensive mixing

between cluster van der Waals, translational and rotational modes.

Nonetheless, the GF matrix diagonalization is an effective method for determination of the

harmonic normal modes of van der Waals clusters; how to generate appropriate cluster F (force

field) and G (reciprocal mass) matrices is the concern of this report. We discuss two algorithms

for the generation of correct G and F matrices for cluster normal modes of vibration. The total

force field-relaxed molecule (TFF-RM) method involves both inter- and intra-molecular force

fields. The external force field (EFF) method involves rigid molecules and the intermolecular force

field only. The results of both calculations are essentially identical and most significantly uniquely

dependent on the chosen intermolecular potential only.

In the ensuing discussion we describe the potentials and concomitant geometries employed

in these calculations. General descriptions of the two calculational algorithms (TFF-RM and EFF)

are then presented. In the third section the details and manipulations associated with both

calculational methods are given. The results and conclusions are presented in the final sections of

this report.

II. GENERAL DESCRIPTION OF THE TECHNIQUES

A. Intermolecular Potentials and Cluster Geometries

Cluster intermolecular potential energy is calculated from several empirical

intermolecular potential forms. Most frequently and generally the atom-atom Lennard-Jones 6-12-

1 potential, adapted from the work of reference 16,
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E = eij"" [Aj /rij 12 _ Cij / rij6 +ee il 1

-ii [A ii . + eIi /i ri

is employed. In eq. (1) the summation is over all atom pairs for different molecules, parameters A

and Cii are given in reference 8, rij are the interatomic distances of the atoms in different molecules,

and ei is the partial change on atom i. The ei can be obtained from the work of Scheraga 1718 and

also from MOPAC 51920 calculation using an appropriate Hamiltonian.

A potential employed for water clusters is somewhat different and is adopted from

the work of Jorgensen: 2 1

E e i C. [ii + rij %2 + cij / i6 + i i3] +Y' eiej / rij. (2)

The parameters dii, ci and b i are given in reference 21. The summation for the

Coulombic term in the potential (denoted by Y') is over all the charge pairs in different molecules,

and the Lennard-Jones summation (denoted by 7) is over all atom pairs for atoms in c. fferent

molecules. Each water molecule in this interaction form has four charges. This water molecule is

thus five centered: two hydrogen atoms with their partial charges and one oxygen atom with two

partial charges located at approximate lone pair positions. This potential form gives the

experimentally suggested water dimer geometry. 22

A potential form proposed for benzene-water clusters is an atom-atom Lennard-

Jones 1-4-6-9-12 potential adopted from the work of Jonsson et al:23

E = in ii = Y [Aii / % + Bij / rij4 f+ i/r 6 + Dij/rij9+ ii / ri 12] (3)

in which the parameters are detailed in reference 23.



6

Cluster geometries are calculated from an energy minimization routine with fixed

(rigid) molecule structures: in the routine, the molecules comprising the cluster are randomly

placed in space and the molecules are translated and rotated toward the cluster structure of lower

energy. All molecules are eventually trapped in a local cluster potential energy minimum. An

energy minimum geometry is defined as that cluster geometry for which all forces and torques on

a molecule are less than ca. 10-14 dynes and dyne-angstroms, respectively, and all molecular

displacements up to roughly 0.iA generate higher energy cluster structures.

B. Total Force Field - Relaxed Molecule Method

This approach to the calculation of the normal modes of clusters considers both the

inter-and intra-molecular force fields; that is, the total cluster force field. The full 3n x 3n force

field matrix F in Cartesian coordinate representation, with n the total number of atoms in the

cluster, is developed and employed.

The intramolecular force field is adopted from the literature. For example, the

general force fields for ammonia, water, methane, etc. are given by Herzberg24 and the general

force field for benzene is given by Whiffen.25 The intermolecular force field is directly calculated

from one of the intermolecular potential energy forms (i.e., eq. (1) or (3)) by analytical calculation

of second partial derivatives.

In order to obtain meaningful harmonic force constants for the cluster based on the

analytical second derivatives of a chosen potential form, the residual force (f.) on all the atoms must

be zero. Since the energy minimization procedure moves rigid molecules as a whole, the force

residue on each atom does not necessarily get minimized as the force residue on the molecule is

minimized. Thus the cluster structure is no longer at a potential minimum when the internal force

field is subsequently involved. Force residues on the atoms are of the magnitude 10 5 to 10-6

dynes, compared to the initial force and torque residues on each molecule of 10-14 dynes and

dyne-angstroms, respectively, at a cluster rigid molecule equilibrium geometry. Thus, if an

accurate reliable harmonic force field is to be evaluated, all the molecular structures in the cluster

have to be "relaxed" in accord with the intra- and inter-molecular potentials employed to insure that



7

a true potential minimum for the atoms in the cluster has been achieved. Higher order non-

harmonic corrections to these intermolecular force fields also depend essentially on the

establishment of a true cluster equilibrium geometry in the presence of all forces, torques and

interaz:tions.

In the calculations discussed below, the Newton-Raphson method is used to

displace each atom in the cluster to find its new equilibrium position. Normal mode analysis is

applied only after the force residue on each atom is less than 10-14 dynes. van der Waals mode

energies are then found by diagonalization of the GF matrix. The internal molecular modes and the

six cluster translational and rotational zero energy modes are then identified and the remaining

modes are the van der Waals vibrational modes of the cluster. Eigenvectors are calculated to

identify and confirm the character of all the generated modes of the cluster.

The quality of the calculational algorithm can in part be judged by the calculated

"zero energy" translational and rotational cluster modes. Of course, the harmonic assumption is

also made by the very nature of the calculation. The overall quality of the theoretical results for van

der Waals modes of clusters (as judged by comparison with experiments) depends on this above

separation, the harmonic approximation and on the quality of the chosen intermolecular potential.

C. External Force Field Method

The external force field method considers each (non-linear) polyatomic molecule as

a rigid body with only six degrees of freedom. The degrees of freedom for the van der Waals

clusters are reduced, with respect to those needed for the TFF-RM method first discussed, from

3n-6 to 6m-6, with n the number of atoms in the cluster and m the number of molecules in the

cluster.

Within the EFF calculational approach, no internal force field is involved. The

force and torque residues for the molecules in the cluster are as originally calculated, ca. 10" 14

dynes or dyne-angstroms, respectively. The mixing between the van der Waals modes and the

cluster translational and rotational modes caused by these residual first derivative terms is

negligible. The originally obtained cluster geometries can be used directly without further
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modification. The 6m x 6m GF matrix can be diagonalized and the van der Waals modes of the

cluster are generated along with the six zero energy modes of overall cluster translations and

rotations. The problem posed for the EFF method is the 3n to 6m coordinate transformation and

its associated first and second order derivatives: these are discussed in detail below.

III. ALGORITHMS AND COMPUTATIONAL PROCEDURES

In this section the formulas used in both the TFF-RM and EFF calculational methods are

derived. Several coordinate systems are required for these calculations and they will be briefly

defined first.

A. Coordinate Systems and Coordinates

We will use and refer to the following coordinate systems: 1. cluster Cartesian

coordinate system; 2. molecular internal coordinate system, involving the bond lengths, bending

angles, etc. in terms of which the molecular internal motions are described; 3. a molecule

Cartesian coordinate system with its origin fixed at the molecular center of mass and its axes

parallel to those of the cluster Cartesian coordinate system; and 4. a molecule principal axis system

(in which the molecular moment of inertia tensor is diagonal). Atoms are located by 3 atomic

coordinates (x, y, z,) and molecules are located by six coordinates in the cluster Cartesian system.

B. Total Force Field-Relaxed Molecule Method

A function g(x) is at a minimum at some point x0 if and only if its first derivative

ag(x)/ax is zero and its second partial derivative matrix a2g(x)/axiax (for all i, j = 1, ..., n) is

positive definite at this point x0 . In other words, a true cluster potential minimum, with zero force

residue f(x) = aE/ax, will yield a semi-positive definite force field matrix F and the eigenvalues of

the F matrix (or the GF matrix) will thereby be all positive or zero. The cluster force field must be

calculated at the equilibrium position of each particle in the cluster to obtain physically meaningful

(non-negative, both zero and positive) normal mode energies.

The readily available and adopted forms for the intermolecular and intramolecular

interactions and force fields are distinctly different. Intermolecular interactions are represented in



9

the form of a potential energy function dependent on the atomic position (Cartesian) coordinates.

The intermolecular forces and the intermolecular force fields are obtained from this function as the

sets of first and second derivatives (evaluated at the equilibrium configuration chosen),

respectively.

On the other hand, the intramolecular force fields are given in the molecular internal

coordinate system in terms of the internal displacement coordinates. The molecular internal

potential energy and restoring forces can only be calculated from molecular distortions by

assuming the molecular internal force fields to be harmonic. Let E, f, and F denote cluster

energy, force residue vector, and force field, respectively. Both E and f have contributions from

the intermolecular (external) interactions and the intramolecular (internal) interactions, such that

E = Eext + Eint

f = fext +ri (4)

with 1
E =2 ASFi(S) ASt

and

fint,x(x) = ASFint(S)(aASt/ax).

In eq. (4) the subscripts ext and int denote contributions from the intermolecular

interaction and the molecular distortions, respectively, AS denotes the internal displacement

coordinate vector, x or S in parenthesis indicates the coordinate system (cluster Cartesian or

molecular internal) with respect to which the matrix or function is presented, the x subscript

indicates the force element in the x-direction, and superscript t indicates the transpose vector.

The force field F, the second derivative of the potential E, in atomic Cartesian

coordinate representation can be written as:
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F(x) = Fext(X) + Fint(x)

with

Fint, xy(x) = (aAS/ax) Fint(S) (DASt/Y)

+ AS Fint(S)(a 2ASti/axay). (5)

The partial derivatives (aAS/ax) and (a2AS/axay) must be calculated. Table I gives

definitions of the internal coordinates (bond stretching, angle bending, out of plane wagging, and

torsion) used in this work. Others can be generated as required. Most of these definitions appear

in reference 15, but a few of the coordinates are redefined in order to remove potential

singularities.

The first partial derivatives of molecular internal coordinates with respect to atomic

Cartesian coordinates (expressed in either the cluster or molecule Cartesian coordinate system - the

elements of the "B-matrix") are deduced and tabulated in reference 15. The analytical second

partial derivatives of the molecular internal coordinates with respect to atomic Cartesian

coordinates have not been previously presented. While these derivatives are straightforward to

obtain, their presentation in vector form is useful for computations: the full deduction of the

requisite first and second partial derivatives in vector form is presented in Table II.

The calculation procedure is as follows: 1. cluster energy E, force residue f, and

force field matrix F are calculated in atomic Cartesian coordinate representation for a given

geometry; 2. if the magnitude of f is greater than 10-14 dynes, a Newton-Raphson method is

employed to find atomic displacements toward a lower cluster potential energy; 3. the total

molecular distortion is updated in molecular internal coordinates for each molecule of the cluster;

4. E, f, F are recalculated as above; 5. termination occurs when the magnitude of f is

appropriately small (ca. 10.14 dynes) and the current F matrix is then used to construct the GF

matrix product for normal mode analysis.
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Note that the molecular distortion in internal coordinates AS must be explicitly

calculated and saved in order to calculate the molecular restoring force. AS cannot be

approximated as (aAS/ax).Ax as the atomic displacements become large (ca. 0. IA).

An eigenvalue shift routine is also employed to ensure rapid approach to a true

potential energy minimum position. Care must be taken to reduce computer rounding errors in

these calculations because the requirements on zero cluster translational and rotational residual

forces are quite stringent. These force residues are made to go to zero.

C. External Force Field Method

In the external force field method, only the intermolecular interaction energy is

considered; that is, E = Eexc The cluster intermolecular potential energy is given originally as a

function of the cluster Cartesian coordinates x of the atoms and any charges not located at atomic

positions. The intermolecular interaction energy must thus be transformed into a function of

molecular coordinates Q. for the jth molecule of the cluster - the index j runs over all m molecules

of the cluster. In order to get both F and G matrices in this molecular displacement coordinate

representation,

E = Eext (x) = Eext (x(Q)), (6)

the appropriate coordinate transformation must be obtained. The vector Q is of the form Q = (Q1,

Q2 ..... Qm) , with Qj given below.

1. The G matrix 15

For each molecule, the molecular displacement coordinates involve three

rotations ( 0' , Oy along the three principal axes of the molecules and three translations (X, Y,

Z) along the cluster Cartesian coordinate system axes. One can then write:
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j j j j'jaIjP3 j -

dXj = I midx i / Im i

d~ja = 7, mi (Pi - idy)/Ija a  (7)

in which mi and xi are the mass and x coordinate of atom i (in a particular molecule j), IJ. is the

molecule moment of inertia along the a-axis, and cj, ji' y are the atomic Cartesian coordinates of

the i th atom in the jth molecule principal coordinate system. Cyclic permutation of the variables

produces the other required relations. Based on these relations, the molecular B-matrix (DQ.I ax)

can now be formed. The G. matrix is thereby given as, 15

Gj = Bji M -1 B tL,  (8)

in which M. is the (diagonal) molecular atomic mass matrix. Eq. (8) yields the correct diagonal

molecular G matrix, with the inverse of the molecular mass as the entry for the molecular

translational motions, and the inverse of the corresponding moment of inertia for the molecular

rotational motions.

Since the translational and rotational degrees of freedom of one molecule are

independent of those of another, the molecular displacement coordinates of one molecule are

orthogonal to those of another. The B matrix of the whole cluster is thus block diagonal and the

G matrix of the cluster is diagonal.

2. The F matrix15

To find the force field matrix F in the same coordinate system we return to

eq. (6) to find

DE/aQ = (aE/ax)*(ax/DQ) (9)

and one element of F(Q) for a given molecule is,
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a2ElaQvaQ4 = (axlaQv),(a2 Eaxay).(ay/aQ.) + (aElax),(a2xlaQvaQ) (10)

in which Q, Qv or Q indicates any of the molecular coordinates Xj, Yj, - 0jZa, oj ' 4 Oj, for

all j.

Since aE/ax is the force f on atoms and not necessarily zero in the EFF

approach, both (ax/aQ) and (a2x/aQvaQ 4) are required to calculate F(Q). Note that the (ax/aQ)

cannot be obtained from inversion of the B matrix as B is singular. The analytical determination

of these first and second derivatives is discussed in the ensuing presentation.

Atomic displacements dx in one molecule are independent of molecular

displacements dQ of another molecule and the matrices (ax/aQ) and (a2x/aQvaQ t) are thereby

block diagonal in terms of molecules in the cluster. We thus drop any notation and indices

referring to a particular molecule.

For a rigid molecule, an atomic transitional displacement is just the

molecular translational displacement and thus,

axi/aX= 1, axi / aY = 0 and a2xi/aX DQ, = 0 (11)

in which xi are atomic coordinates of the ith atom, X and Y are the molecular x- and y-

coordinates, respectively, and Q4 can be any molecular translational or rotational coordinate.

Other derivatives are found by cyclic permutation of the coordinates in eq. (11).

The derivatives of eq. (9) and (10) must be found only for the molecular

rotational coordinates (0., op, 0 ). The derivatives can be explicitly generated by first

considering the general rotation matrix R(O) for a rotation about an arbitrary direction in space.

Let (a1, a2, a3) be a unit vector along that direction and let 0 be the rotation angle about this

direction. The rotation matrix R(8) is then, 26
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cosO + a2 (1 - cosO) a a2(1 - cose) - a3sine a a3(1 - cosO) + a2sinO

R(0) = ata 2 (1 - cosO) + a3sinO cose + ai (1 - cose) a2a3(1 - cosO) - a1 in0

/,a 3 (1 - cosO) - a2sin0 a2a3(1 - cosO) + alsine cosO + a (1- cose)

(12)

This rotation matrix is derived as a product of three successive rotations: a

rotation of the z axis to the direction (a1, a2 , a3); a rotation of the coordinate system around the

new z axis (a1, a2 , a3) by an angle -0; and a rotation of the z axis back to its original direction.

Based on this general rotation matrix form, an ordered set of rotation

matrices Ra (0(r), R (053), R,(O for each atom (i) in the molecule can be defined as,

rt = R ) P 40 ) r ' "  (13)

In eq. (13) Rap Rp, and R, are the matrix representations of rotations along

the molecular principal axes (x, P3, and y, respectively, r0 are the unrotated and r the rotated

atomic coordinate vectors in the molecular Cartesian coordinate system. With this definition, we

have for each atom in a molecule,

art/ao = dla(Oa)/d0cR0( p)I(0y)rto

2 =d2
2rt/*a - 2R(a)/do2RiPO(01Y) )o

a 2 rt/aoaa= dRa(oa)/do(odR3(01)/d%1Ry 6)r4. (14)

When evaluated at Ox = 3= 0 Y = 0, these derivatives are,
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(O -a13  a 12

ar'/a,= a. 0 -an1  r

,-a12 a1  0 (15a)

a11 - 11 12 a11a13

2r/~4 = alla12 a1 -1 a12a13  ro

1a 1a13  -(15b)

(aria 21  a12a21  a13a21

2rtfd~ai = alia22 a12a2 a 13a22 rt

,a11a23 a12a a 13a23I

= at (a ro)

The other derivative forms not explicitly stated in eq. (15) can be obtained

by cyclic permutation of the indices. In these equations aa = (all, a12 , a13), ap = (a2 1, a2 2, a2 3)

and a7 = (a3 1, a32, a33). The av are the three unit vectors along the three molecule principal axes

represented in the original cluster Cartesian coordinate system. Their components are simply the

direction cosines of the molecular principal axes in the cluster Cartesian coordinate system if the

rotation is a proper rotation. The rotation matrix formed by these vectors,

(an1 a21 a1)

P = (a , at = a12  a.2 ay3

ka 13 a2z3 a33 (16)

can be gotten from the orthogonal matrix which diagonalizes the molecular moment of inertia

tensor.
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One can readily demonstrate that the rotation order (order of the matrices in

eq. (13)) is of no consequence for the final F (Q) provided that: the same rotation order is

maintained for all atoms in a molecule; the molecule has no net torque; and the rotation is an

infinitesimal one. Moreover, the rotation matrix P in eq. (16) may be either proper or improper

(i.e., IP = + 1). Of course, all the rotation matrices for all the molecules in the cluster must be

simultaneously proper or improper.

3. Eigenvectors

To visualize the resulting eigenvectors of the GF matrix in the EFF method,

transformation of these eigenvectors into the cluster Cartesian coordinate system is quite helpful.

We discuss this procedure below.

Three successive small rotations (' Pr3' Ct of a molecule around its three

molecular principal axes are equivalent toa single rotation 4 around the axis pointing in the

direction (0(' ¢0' Oy for which 0 is the norm of the vector (Ot, Op, O). Rotation of a molecule

through (4y' 05, 4Y ) in the molecular principal coordinate system is equivalent to rotation of the

molecule about (0 i, ' y P in the molecular coordinate system with axis parallel to those of the

original cluster Cartesian coordinate system.

For three infinitesimal rotations Oa, Op, OY around the three molecular

principal axes, eq. (15a) gives,

1,I -,'.€

rt = (ro + dr)t= ,t 1 -c'a r(t

inp which j P(17)

in which (0'.,' O'1p O't) = (0""' 010, 0,) P"
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Let the eigenvector coefficients for a molecule j be (X', Y'j, Z' 4, O 4a' ' Oj%.." The equivalent but

unnomalized eigenvector coefficients for each atom i in molecule j are,

0i., 0 "0ja' rti +  YJ'

LI3 ' 0ja# 0 ( 1)(18)

in which again (0)' 'j' 0 d (Oa, op Oj4 Pj, and r i is the atomic coordinates of atom i in the

molecular coordinate system with axes parallel to those of the original cluster Cartesian coordinate

system.

4. Summary of EFF Method

The EFF computational procedure is summarized as follows: 1. calculate

the intermolecular force vector f and force field F in atomic coordinates based on the cluster

geometry of the local energy minimum with rigid molecular structure; 2. find the molecular

moment of inertia tensor for every molecule in the cluster and diagonalize it; 3. the molecular mass

and principal moments of inertia are saved as the inverse entry of the usual G matrix; 4. the

orthogonal matrices which do this diagonalization are determined to be proper or improper and are

saved as the rotation matrices P in eq. (16); 5. the matrices of the first partial derivatives Dx/aQ

and second partial derivatives a2x/aQvQ 9 are calculated based on eq. (11) and (15); 6. the GF

matrix is formed in the molecular coordinate representation and diagonalized; and 7. the

eigenvectors are transformed back to atomic coordinates for visualization according to eq. (18).

IV. RESULTS AND DISCUSSION

A. Homogeneous Clusters

Table III contains the results of calculations of the van der Waals modes of the

water dimer by several different techniques: TFF-UM, TFF-RM, EFF, and MOPAC 5 algorithms.

Different potential forms are employed as well for the two methods advocated in this work.
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Unfortunately, no experimental results are available for comparison. The cluster geometries

associated with these potentials are given in Figure 1. The "relaxed" geometry obtained for this

dimer (TFF-RM) is not distinguishable from that of the original one presented. The results for the

two methods discussed in detail (TFF-RM and EFF) are virtually indistinguishable - this

demonstrates the detailed correctness of both calculational methods. The residual non-zero

rotational and translational energies are due almost entirely to round-off errors in the computer

calculation.

Since no five-center water molecule internal force field is available, mixing of the

eq. (2) intermolecular force field and any three-center intramolecular force field in any TFF

approach causes non-zero cluster translational energies. This potential then can only be employed

within the EFF method.

The TFF-UM approach with any intra- and inter- molecular potential, generates

large, residual forces on the atoms and thereby large non-zero (negative) eigenvalues for the overall

translational and rotational modes of the clusters. This is seen in Table III.

One might anticipate that by increasing the internal force field and thereby making

the molecule more rigid, one could force these negative eigenvalues to zero. The results presented

in Table IV do not support this position. Two reasons can be cited for the failure of this approach:

I. the force residue, from which these negative eigenvalues derive, is neither reduced nor balanced

by increasing the internal force field; and 2. the disparity between the sizes of the two force fields

eventually causes the matrix diagonalization routine to fail.

The first column of Table IV gives the calculated energies for the water dimer

geometry given in Figure Ic. This structure is at a saddle point on the intermolecular potential

surface described in eq. (1). Cluster geometries at true energy minima (f = 0 and iFI semi-positive

definite) must have six zero energy translational and rotational modes, and no negative vibrational

energies. Cluster geometries at saddle points may also have six zero energy modes but

additionally have negative energy vibrational modes due to the negative curvature of the potential

surface at the saddle point in some direction. Non-zero residual forces will cause non-zero
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translational and rotational energies. Thus a van der Waals mode analysis can be ,ised to check

for true minimum energy or saddle point cluster structures. These results (Table III and IV)

suggest that the geometries observed from the energy minimization analysis are indeed at local

energy minima.

Larger water clusters [(H20)m, n = 3, ..., see Figure 2] represent a very difficult

calculation for the TFF-UM approach due to the strong intermolecular interactions. Thus, mixing

of the van der Waals modes with both the internal modes of water and the overall rotational and

translational motions of the cluster (f > 0) can be quite extensive. Table V, along with Tables III

and IV, provides an example of this problem. Clearly the normal modes of even the simplest

clusters can be reliably calculated only after the residual forces in the cluster are zeroed (by TFF-

RM, EFF, or some other technique).

The difference between mode energies calculated by the TFF-RM and EFF methods

is greatest for the high energy modes due to the mixing of the van der Waals modes with the

internal modes: the TFF-RM high energy modes are lower in energy than the comparable EFF

modes as is to be expected. The two methods yield nearly identical results for the low energy

modes. The requisite relaxed geometry calculated for the TFF-RM method is different from that

of the original energy minimization result by typically less than 0.1 A (see Figure 2).

B. Heterogeneous Clusters

van der Waals energies calculated by the TFF-UM, TFF-RM, and EFF methods for

various different potentials (eq. (1) and eq. (3)) are presented in Table VI for C6H6(H20) 1,

(NH 3)1 and (CH4 )1. These results are compared to the earlier calculations of reference 8. The

maximum cluster translational and rotational energies for each calculation are given in parenthesis.

All the corresponding cluster geometries, based of course on the various potentials, are depicted in

Figure 3.

The calculational results for heterogeneous clusters presented in Table VI are nearly

identical for both the TFF-RM and EFF methods. Apparently little internal mode-external mode

coupling takes place in these clusters. Clearly cluster geometry (i.e., C6H6 (NH 3)1 ) and cluster
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intermolecular potential are the major determining factors for normal mode energies in these

clusters if the calculations are performed at an appropriate equilibrium position.

Based on these new calculations we can attempt to reassign the observed van der

Waals modes for the clusters presented in Table VI and Figure 3. The right-hand column contains

the experimentally observed van der Waals mode energies. Only the fundamentals that seem

reasonably intense and well characterized are included in this listing. If the molecular structures

are not properly relaxed (TFF-UM) to drive f to zero, the low frequency van der Waals modes

mix with the cluster translational and rotational motions. The extent of mixing not only depends

on the magnitude of the force residues, but also on the nature of the internal force field. This latter

point can be seen in the first two columns of Table VI for the TFF-UM calculation: the

comparison is for the data of reference 8 and the calculations presented herein using a more

complete and accurate force field for both molecules of the heterogeneous cluster.

The eigenvectors calculated by both the TFF-RM and EFF methods are identical for

a given potential function; the form of the eigenvectors and the mode energies are, of course,

highly dependent on the chosen intermolecular potential. This can be seen in Figure 4 quite

clearly.

C. TFF-RM or EFF?

While the EFF method of calculating cluster normal modes of vibration does not

yield the internal-external mode mixing and concomitant mode splittings and shifts, it does

provide a simple effective method that yields quite reasonable results, especially if the external and

internal modes are well separated in energy. For large clusters we recommend the EFF method

(with the above caveats ) for the following reasons: 1. only the intermolecular potentials are

required; 2. reminimization of the cluster energy is not required; 3. since each molecule is

described by only six coordinates much less computer memory is needed for this method

compared to the TFF-RM method; and 4. the TFF-RM method can be applied only to atom-atom

interaction potentials with point charges located at atomic mass positions.
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V. CONCLUSIONS

Two methods for the calculation of van der Waals modes of molecular clusters are

presented. One uses both internal and external force fields to calculate all the vibrational

eigenvectors and eigenvalues for a given cluster. The other employs the intermolecular force field

only and thus obtains only van der Waals mode eigenvectors and eigenvalues. Both techniques

ensure that modes are calculated for equilibrium structures of the cluster only. Both approaches

give excellent separation between van der Waals modes and overall cluster (zero energy)

translational and rotational degrees of freedom and give no negative eigenvalues.

The TFF-RM method, employing both internal molecular and intermolecular force fields,

shows small mixing between the lower energy molecule modes and the high energy cluster modes.

The two methods, TFF-RM and EFF, yield virtually identical results for van der Waals modes

below 150 cm -1 , for the clusters and potential energy forms considered herein. In general, the

calculation seems to be in good agreement with the sparse experimental data. The TFF-RM

method also generates "exchange or exciton" type interactions between the internal molecule modes

of the clusters.
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Table I. Definitions of Internal Coordinates

Internal Mode Variable, definition, and Formula Expression

Bond Stretching rij (distance between atom i and j)

rij = IrijI = Iri - rjl

Angle Bending I Oijk (angle between bond rij and rkj)

Cos (Oijk) = rijrkj/rijrkj

Angle Bending II OH (angle created by bond rij bending with respect

to the bisector of the k-j-1 angle) OH = (Oijk -0ijl)/2.

Out of plane Yijkl (angle between rik and the plane determined by

Wagging j, k and 1 atoms)

Sin (Yijkl)= rik-(rjk x rkl)/riklrjk x rklJ

Torsiona lijkl (angle between bonds rij and rki, viewed along

rjk bond)

Sin(Dijki) = ((rij x rjk) rkl) rjk / Irij x rjkl 1rjk x rkil.

aThis definition of (Dijkl is valid only about (D - 0 and - K. At ~2 and -3n
2 2

this definition yields a singularity for the necessary derivatives and a new

relation is required.



Table IL. Derivatives of Vector Quantities
a, b, c, d are vectors, and a, b, c, d are their lengths.

Derivatives of u = a-b/(ab)

au/cax =[a(a-b)/ax]/(ab) - (Da/ax)u/a - (Db/ax)u/b

a2 u/axay =[a 2 (a-b)/axay]/(ab)

-[(aa/ay)/a + (ab/ay)/b](au/ax) - [(aa/ax)/a + (ab/ax)Ib](aulay)

-[(aa/ax)(ab/ay) + (Da/ay)(ab/ax)] u/(ab)

-(a
2 a/axay) u/a - (a2 b/Dxay) u/b

Derivatives of v = (a-d)c/(ab)

avla = [a(a-d)/ax] c/(ab) + (a-d)(ac/ax)/(ab)

-(aa/ax)v/a - (ab/ax)v/b

a~v/axa [a2 (a-d)fixay] c/(ab) + (a-d)(a 2 c/axdy)/(ab)

+ I [Da-d)/ax] (ac/ay) + [a(a-d)/ayJ(ac/ax) I/(ab)

- [(aa/ay)/a + (ab/ay)/bI(av/ax) - [(aa/ax)/a + (Db/ax)/bl(av/Dy)

- [(aa/ax)(ab/ay) + (aa/ay)(ab/ax)] v/(ab)

- (a2 a/axay) v/a - (a2b/axay) v/b

Other Necessary Derivatives

aa/ax = ea/xa

32 a/axay = [I a.(a 2 a/axay) + (aalax).(aa/ay) - (aalax)(aa/ay)I/a

a~a-)/ax = (aa/ax).b + a.(ab/Dx)

a(a x b)/Dx = (aa/ax) x b + a x (ab/ax)

When both a and b are rij:

a2(a-b)/axay =(aa/ax).(ab/ay) + (Da/ay).(ab/ax)

a2 (a x b)/axay =(aa/ax) x (ab/ay) + (aa/ay) x (ab/ax)



Table III. vdW normal mode comparisons (in cm-1) for (H20)2.
The entry in parenthesis in each column represents the largest
non-zero energy for the cluster translational and rotational
motions.

Eq. 1 Eq. 1 Eq. 2 MOPAC 5 Eq. 1
TFF-RM EFF EFF TFF-UM

441.4 459.0 723.1 483.5 437.3
289.5 291.0 716.6 434.1 238.5
153.5 155.8 307.5 379.6 108.5
118.5 119.4 301.1 270.6 57.5

95.9 96.9 263.4 190.7 0.2
26.9 26.9 99.6 100.2 0.0
(0.7) (0.1) (0.2) (121.0) 0.0

-17.5
-33.0
-54.5
-69.7
-85.6



Table IV. The effect of a saddle point structure and an increased
internal force field on cluster normal modes (in cm-l): (H20)2.
Example for TFF-UM employing Eq. 1.

Saddle Point Field x 100 Field x 102 Field x 104 Field x 106

438.5 437.3 456.3 458.1 1126.7
245.8 238.4 238.5 249.2 702.3
103.2 108.5 109.1 133.7 625.6
97.7 57.5 57.5 57.5 395.5
90.6 0.2 0.0 43.5 61.9

0.1 0.0 0.0 0.0 57.3
0.1 0.0 -1.9 0.0 0.0
0.0 -17.5 -17.3 -14.7 0.0
0.0 -33.0 -33.0 -23.8 -14.8
0.0 -54.5 -54.4 -46.7 -24.5
0.0 -69.7 -69.7 -56.9 -52.0

-409.2 -85.6 -85.5 -79.0 -66.2
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Table VI. Normal mode (in cm-1) comparisons for inhomogeneous
clusters. The structures are depicted in Figure 3. The entry in
each column in parenthesis represents the largest value for the
set of modes indicated.

C6 H6 (H 20)l

Ref. 8 Eq. 1 Eq. 1 Eq. 1 Eq. 3 Expt. Mode Identity
TFF-UM TFF-RM EFF EFF (Approx.)

156 167.5 162.7 163.0 287.0 Tx
50 163.4 161.4 162.5 125.0 Ty

159 51.3 50.2 50.2 82.0 Stretch

18 30.0 29.5 29.4 39.0 3 0 .3 a Bendl
14 21.1 24.1 24.2 38.8 2 5 .5 a Bend2

40 40.0 4.4 4.3 5.1 5 .2 b Tz
(?) (6.31) (0.49) (0.04) (0.05) (Rot.)
(?) (0.44) (0.00) (0.00) (0.00) (Tr.)

C6H 6 (NH3)1-Geometry A

Ref. 8 Eq. 1 Eq. 1 Eq. 1 Mode Identity
TFF-UM TFF-RM EFF Expt. (Approx.)

152 156.1 152.0 153.1 Tx
152 156.1 152.0 153.1 Ty

97 97.7 97.8 98.4 Stretch
19 30.7 29.5 29.7 Bendl
19 30.7 29.5 29.7 Bend2
44 43.2 16.0 16.3 15.0 b  Tz
(?) (7.96) (0.65) (0.06) (Rot.)
(?) (0.41) (0.00) (0.00) (Tr.)



Table VI (continued)

C6H6(NH3)1-Geometry B

Ref. 8 Eq. 1 Eq. 1 Eq. 1 Mode Identity
TFF-UM TFF-RM EFF Expt. (Approx.)

44 42.2 128.3 128.7 Tz
112 109.7 106.6 107.6 Stretch

21 36.4 36.5 36.4 Bendi1
125 135.2 31.4 31.9 Txyl

15 21.6 17.7 17.7 17 .9 b Bend2
48 46.0 6.7 7.6 8 .8b Txy2
(?) (6.95) (0.06) (0.06) (Rot.)
(?) (0.46) (0.00) (0.00) (Tr.)

C6H6 (CH 4 )I

Ref. 27 Eq. 1 Eq. 1 Eq. 1 Mode Identity
TFF-UM TFF-RM EFF Expt. (Approx.)

89 93.4 90.9 91.1 Tx
89 93.4 90.9 91.1 Ty
8 2 82.7 82.7 82.8 Stretch
1 6 26.8 25.9 26.0 27.3 a  Bend y
1 6 26.8 25.9 26.0 27.3 a  Bend x
28 32.1 11.8 11.9 16.1 a  Tz
(?) (6.44) (0.63) (0.02) (Rot.)
(?) (0.41) (0.00) (0.00) (Tr.)

1
aln the 60 region.

bin the origin region.



Figure Captions

Figure 1. Water dimer geometry. a. Geometry of the minimum energy
configuration obtained from Scheraga's intermolecular potential; 16 b.
Geometry of the minimum energy configuration obtained from Jorgensen's
intermolecular potential; 2 1 c. Geometry at an energy saddle point obtained
from Scheraga's intermolecular potential. 1 6

Figure 2. A few geometries of minimum energy configuration of higher
order water clusters obtained from Scheraga's intermolecular potential. 16

Structures on the left are generated by the energy minimization routine.
Structures on the right are generated by the TFF-RM algorithm, a. one of
the water trimers; b. one of the water tetramers; c. one of the water
pentamers; d. one of the water hexamers; e. one of the water heptamers.

Figure 3. Cluster geometries of minimum energy configuration. a.
Benzene(water)l from Scheraga's potential; 16 b. One of the benzene (water)l
structures employing Jonsson's potential; 23 c. One of the benzene(ammonia)l
structures employing Scheraga's potential; 16 d. Second benzene(ammonia)l
employing Scheraga's potential; 16 e. Benzene(methane)l employing
Scheraga's potential; 16 f. Second benzene(water)l structure employing
Jonsson's potential. 2 3

Figure 4. Normal vdW mode vibrations of the benzene(water)l cluster, a.
TFF-RM method employing Scheraga's potential; 16 b. EFF method employing
Scheraga's potential; 16 c. EFF method employing Jonsson's potential. 2 3 The
mode energies are indicated for each pattern displayed (in cm' 1 ).
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